646
Other Games / Re: Titan: Blizzard's Next Gen MMO; It's a new IP, NOT STARCRAFT
« on: December 17, 2010, 11:16:33 pm »But there's the thing, it's not mass + gravity. It's mass * gravity. Weight is a heck of a lot more than just mass on it's own. If you had to move the weight of the cargo in a large spaceship, you'd soon find your engines crippled under the weight of it.No, no, no. Weight depends on the local gravity, so it varies depending on the environment. A brick with a mass of one kilogram will have a weight of 9.81 newtons (2.2 pounds) on Terra, a weight of 1.62 newtons on Luna (0.36 pounds), and a weight of zero newtons (0 pounds) on the International Space Station. But in all cases it's mass will be the same: one kilogram.*
And engines won't be crippled when pushing something heavier than what they were designed for in space. They'll just provide poorer acceleration.
*Got that example from the Project Rho site, by the way. Here's the whole thing.
Quote from: Project Rho
Mass Is Not Weight
There is a difference between weight and mass. An object's mass is always the same, but an object's weight depends upon what planet it is sitting on. A brick with a mass of one kilogram will have a weight of 9.81 newtons (2.2 pounds) on Terra, a weight of 1.62 newtons on Luna (0.36 pounds), and a weight of zero newtons (0 pounds) on the International Space Station. But in all cases it's mass will be the same: one kilogram. (Chris Buzon points out that if the object is moving at relativistic velocities relative to you, you will measure a mass increase. But this is not noticeable at ordinary relative velocities.)
The practical consequence is that if you are in a spacesuit on the Space Station, you cannot move everything by tapping it with your pinky finger (you may start it moving at a rate of one millimeter per week, but that is close enough to "cannot" for government work). The Space Shuttle may be floating next to the station with a weight of zero, but it still has a mass of 90 metric tons. If it is stationary and you pushed on it, there will be very little effect (in fact, about the same effect as if the Shuttle was sitting on the tarmac at Cape Kennedy and you gave it a shove).
And if it is moving slowly on a collision course with the station, and you are in between, the fact that it has zero weight will not prevent it from crushing you like a bug despite your attempts to stop it. It takes just as much energy to stop an object as it took to start it moving.
Sorry, but your orbital construction crews will NOT be able to manually manipulate multi-ton girders like they were toothpicks.
The other factor to consider is Newton's Third Law. If you push on a girder, there will be both action and reaction. Since the girder has more mass, it will start moving a microscopic amount. But since you have less, you will start moving in the opposite direction with much more velocity. This renders many common tools unusable in the free fall environment, such as hammers and screwdrivers.

